If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-20x-99=0
a = 10; b = -20; c = -99;
Δ = b2-4ac
Δ = -202-4·10·(-99)
Δ = 4360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4360}=\sqrt{4*1090}=\sqrt{4}*\sqrt{1090}=2\sqrt{1090}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{1090}}{2*10}=\frac{20-2\sqrt{1090}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{1090}}{2*10}=\frac{20+2\sqrt{1090}}{20} $
| n+20+(2n-18)=137 | | 8/6=v+3/2 | | -(x+7)=3(x+3) | | 1.8x0.1=x(0.05+X) | | 3x-12=2x±3 | | (95/100)x+100=x | | 14-3a=-6a+4 | | 20=2-(y+5) | | 4=-16x^2+32x+16 | | 5(x+2)+4=-31 | | 2x-6+6x=-38 | | 0=-16x^2+32x+16 | | 2^x-x^2=1/8^x | | 4/3x+2=14 | | 2^x-x^2=1/8x | | √2x+7+√3X-1=8 | | 12y+7=10 | | 2x+7=-3(x+1 | | 7.5-4.25x=8 | | y=(-1.5+4)/3 | | 3x4=21x3 | | 13/y=7/11 | | 126=(6x-1)(5x+17) | | 15-(2p+7)=14 | | 7/10=x/x-1 | | X-4=12x=8 | | n/2-11=3 | | 3/4(1/4n)-1/2=1/8 | | x=0.25-0.875(2.5-x) | | x2+2=3x2-16 | | 23x+14x=42x | | 7x-3x=512 |